Selasa, 29 Juni 2010 | By: subhan

MATEMATIKA MATRIKS INVERS

JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan B = A − 1 ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan A = B − 1. Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.
Matriks A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix} dapat di-invers apabila ad - bc ≠ 0
Dengan Rumus =
A^{-1} = \frac{1} {ad-bc}\begin{bmatrix} d & -b \\
 -c & a \\ \end{bmatrix} = \begin{bmatrix} \frac{d} {ad-bc} & 
-\frac{b} {ad-bc} \\ -\frac{c} {ad-bc} & \frac{a} {ad-bc} \\ 
\end{bmatrix}
Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-invers dan (AB) − 1 = B − 1A − 1

Contoh 1:
Matriks
A = \begin{bmatrix} 2 & -5 \\ -1 & 3 \\ \end{bmatrix} dan B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \\
 \end{bmatrix}
AB = \begin{bmatrix} 2
 & -5 \\ -1 & 3 \\ \end{bmatrix}\begin{bmatrix} 3 & 5 \\ 1 & 2 \\ 
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 
\end{bmatrix} = I (matriks identitas)
BA = \begin{bmatrix} 3 & 5 \\ 1 & 2 \\ 
\end{bmatrix}\begin{bmatrix} 2 & -5 \\ -1 & 3 \\ 
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 
\end{bmatrix} = I (matriks identitas)
Maka dapat dituliskan bahwa B = A − 1 (B Merupakan invers dari A)

Contoh 2:
Matriks
A = \begin{bmatrix} 1 & 1 \\
 3 & 4 \\ \end{bmatrix} dan B = \begin{bmatrix} 2 & 5 \\ 3 & 4 \\
 \end{bmatrix}
AB = \begin{bmatrix} 1
 & 1 \\ 3 & 4 \\ \end{bmatrix}\begin{bmatrix} 2 & 5 \\ 3 & 4 \\ 
\end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \\ 
\end{bmatrix}
BA = \begin{bmatrix} 2
 & 5 \\ 3 & 4 \\ \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 3 & 4 \\ 
\end{bmatrix} = \begin{bmatrix} 17 & 21 \\ 15 & 19 \\ 
\end{bmatrix}
Karena AB ≠ BA ≠ I maka matriks A dan matriks B disebut matriks tunggal.

Contoh 3:
Matriks
A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \\ 
\end{bmatrix}
Tentukan Nilai dari A-1
Jawab:
A^{-1} =\frac{1} {(3)(2)-(5)(1)}\begin{bmatrix} 2 
& -1 \\ -5 & 3 \\ \end{bmatrix} = \frac{1} {6-5}\begin{bmatrix} 2
 & -1 \\ -5 & 3 \\ \end{bmatrix} = \frac{1} {1}\begin{bmatrix} 2
 & -1 \\ -5 & 3 \\ \end{bmatrix} = \begin{bmatrix} 2 & -1 \\
 -5 & 3 \\ \end{bmatrix}

Contoh 4:
Matriks
A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 
\end{bmatrix}, B = \begin{bmatrix} 3 & 2 \\ 2 & 2 \\ 
\end{bmatrix}, AB = \begin{bmatrix} 7 & 6 \\ 9 & 8 \\ 
\end{bmatrix}
Dengan menggunakan rumus, maka didapatkan
A^{-1} = \begin{bmatrix} 3 & -2 \\ -1 & 1 \\ 
\end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 
\frac{3} {2} \\ \end{bmatrix}, (AB)^{-1} = \begin{bmatrix} 4 & -3 \\ 
-\frac{9} {2} & 8 \\ \end{bmatrix}
Maka
B^{-1} 
A^{-1}= \begin{bmatrix} 1 & -1 \\ -1 & \frac{3} {2} \\ 
\end{bmatrix}\begin{bmatrix} 3 & -2 \\ -1 & 1 \\ 
\end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -\frac{9} {2} 
& 8 \\ \end{bmatrix}
Ini membuktikan bahwa (AB) − 1 = B − 1A − 1

8 comments:

Unknown mengatakan...

thank's atas infonya, tp lebih bagus lagi dikasih perincianya
misal, perkalian'a di silang atau dijelaskan rumus baku'a
sory cuma saran ^^

Muhlisun Nur Hidayat mengatakan...

makasih gan buat infonya.. visit blog saya gan..
mlisunblog.blogspot.com

Unknown mengatakan...

Gmn sih rumus matrika yang jelas, susah bgt nih soalnya

aisyah si unyiL mengatakan...

mksih infonya. lebih bgusnya d tmbah trik cepatnya kan ada juga tuh..
mksih :)

Unknown mengatakan...

thanks gan ;)

Unknown mengatakan...

Bisa ga si diperjelas lagi? Gamasuk otak tentang invers suwer-_-

Lostonesun mengatakan...

makasih ya gan, ini saya lagi ulangan sangat membantu

Unknown mengatakan...

Dik= x+y=2
3x+(-2y)=1
tentukan 2x+5y=
matriks AXB

Posting Komentar