Minggu, 26 Februari 2012 | By: subhan

BARISAN DAN DERET ARITMATIKA


BARISAN adalah urut-urutan bilangan dengan aturan tertentu. 
Suku-suku 
suatu barisan adalah nilai-nilai dari suatu fungsi yang daerah definisinya himpunan bilangan asli (n = natural = asli)
Contoh:

  1. Un = 2n - 1
    adalah suku ke-n dari suatu barisan, dimana n Î N = {1,2,3,.....}
    Barisan itu adalah : 1,3,5,7,....

  2. Diketahui barisan 1/3 , 1/6 , 1/9
    Rumus suku ke-n barisan ini adalah Un = 1/3n
  1. BARISAN ARITMATIKA

    U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
    U- U1 = U- U2 = .... = Un - Un-1 = konstanta

    Selisih ini disebut juga beda (b) = b =Un - Un-1 

    Suku ke-n barisan aritmatika a, a+b, a+2b, ......... , a+(n-1)b
                                          U1, U2,   U3 ............., Un

    Rumus 
    Suku ke-n :

    Un = a + (n-1)b = bn + (a-b) 
    ® Fungsi linier dalam n
  2. DERET ARITMATIKA
    a + (a+b) + (a+2b) + . . . . . . + (a + (n-1) b) disebut deret aritmatika.
    a = suku awal
    b = beda
    n = banyak suku
    Un = a + (n - 1) b adalah suku ke-n
    Jumlah n suku

    Sn = 1/2 n(a+Un)
          = 1/2 n[2a+(n-1)b]
          = 1/2bn² + (a - 1/2b)n ® Fungsi kuadrat (dalam n)

    Keterangan:

    1. Beda antara dua suku yang berurutan adalah tetap (b = Sn")
    2. Barisan aritmatika akan naik jika b > 0
      Barisan aritmatika akan turun jika 
      b < 0
    3. Berlaku hubungan Un = Sn - Sn-1 atau Un = Sn' - 1/2 Sn"
    4. Jika banyaknya suku ganjil, maka suku tengah

      Ut = 1/2 (U1 + Un) = 1/2 (U2 + Un-1)          dst.
    5. Sn = 1/2 n(a+ Un) = nUt ® Ut = Sn / n
    6. Jika tiga bilangan membentuk suatu barisan aritmatika, maka untuk memudahkan perhitungan misalkan bilangan-bilangan itu adalah a - b , a , a + b


0 comments:

Posting Komentar